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Learning Goals - Optimization 

• Define goals of optimization and problem 

components 

• Identify information needed by DAKOTA 

• Become familiar with basic solution approaches 

• Define optimization problems associated with 

your field 

• Formulate and set up an optimization problem 

associated with the cantilever beam example 

• Find and interpret optimization study results 

• Survey problem categories and considerations 

for method selection 
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• What: Determine parameter values that yield extreme values of 

objectives, while satisfying constraints. 

• Why? 

– Identify system designs with maximal performance 

• E.g., case geometry that minimizes drag and weight, yet is sufficiently 

strong and safe 

– Determine operational settings that maximize system performance 

• E.g., fuel re-loading pattern yielding the smoothest nuclear reactor power 

distribution while maximizing output 

– Identify minimum-cost system designs/operational settings 

• E.g., delivery network that minimizes cost while also minimizing 

environmental impact 

– Identify best/worst case scenarios 

• E.g., impact conditions that incur the most damage 

Why Use Optimization? 
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Optimization Goals Come 

in Multiple Forms 

May want tradeoffs between 

multiple objectives 

Some applications: local 

improvement suffices; 

others: must find global 

minimum at any cost 
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global 

extrema 

image from  

http://en.wikipedia.org/wiki/Pareto_efficiency 
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Optimization for Lockheed-Martin  

F-35 External Fuel Tank Design 

Optimization Problem 

• Goal: Minimize DRAG and YAW over 

possible values of shape parameters 

• Shape parameters must be bounded to fit 

within prescribed area 

• Design must be sufficiently safe and strong 

fuel tanks 

F-35: stealth and supersonic cruise 

~ $20 billion cost 

~ 2600 aircraft (USN, USAF, 

USMC, UK & other foreign buyers) 

LM CFD code 

• Expensive: 8 hrs/job on 16 

processors 

• Fluid flow around tank highly 

sensitive to shape changes   

Objective Function: quantity for which 

we are trying to find the extreme 

value over parameter ranges 

Parameters: quantities to be varied 

Constraints: conditions that cannot 

be violated 
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Brief Group Discussion: 

Optimization Practice 

5-10 min discussion 

• What types of system design, performance, and 

cost questions do you ask in your domain? 

• What metrics do you use to assess design 

quality, performance level, and costs? 

• How do you answer your questions currently? 

• What are the key challenges you face? 

• Can any of your questions be framed (or re-

framed) as finding extremes? 
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Specified in DAKOTA 

input file 

Computed by simulation 

and reported to DAKOTA 

Objective function(s) 

 

Nonlinear inequality constraints 

Nonlinear equality constraints 

 

Linear inequality constraints 

Linear equality constraints 

 

Bound constraints 

       Anatomy of an Optimization Problem: 

       Mapping to DAKOTA Interface 

Minimize:    f(x1,...,xN) 

 

Subject to:  gLB ≤ g(x) ≤ gUB 

            h(x) = hE 

 

            AIx ≤ bI 

            AEx = bE 

 

            xLB ≤ x ≤ xUB 
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Need info in “interface” 

and “responses” blocks  

Objective function(s) 

 

Nonlinear inequality constraints 

Nonlinear equality constraints 

 

Linear inequality constraints 

Linear equality constraints 

 

Bound constraints 

       Anatomy of an Optimization Problem: 

       Mapping to DAKOTA Interface 

Minimize:    f(x1,...,xN) 

 

Subject to:  gLB ≤ g(x) ≤ gUB 

            h(x) = hE 

 

            AIx ≤ bI 

            AEx = bE 

 

            xLB ≤ x ≤ xUB 

    

 

Need info 

in “method” 

block 

Need info in “variables” block 
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Basic Classes of Optimization 

Approaches (the “method” block) 

Gradient Descent 

• Looks for improvement 

based on derivative 

• Requires analytic or 

numerical derivatives 

• Efficient/scalable for 

smooth problems 

• Converges to local 

extreme 

Derivative-Free Local  

• Sampling with bias/rules 

toward improvement 

• Requires only function 

values 

• Good for noisy, unreliable 

or expensive derivatives 

• Converges to local 

extreme 

Derivative-Free Global 

• Broad exploration with 

selective exploitation 

• Requires only function 

values 

• Typically computationally 

intensive 

• Converges to global 

extreme 
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Variations on 

Gradient-Based Optimizers 

• Go downhill 

– e.g., steepest descent, conjugate gradient, 

Newton and variants 

– second derivatives differentiate minima from 

maxima, inflection points; Hessian 

approximations often used in practice (quasi-

Newton) 

• Require reliable derivatives of objectives and  

nonlinear constraints w.r.t. decision variables: 

– analytic evaluation: code them into the simulation 

– finite differences: no code modification and 

provided by most optimizers 

– automatic differentiation: source transformation, 

operator overloading 
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• Strategies for managing convergence: 

– line search: find a step in the Newton direction to ensure sufficient decrease 

– trust region: use quadratic model in an expanding/contracting trust region 

• Handling nonlinear constraints 

– reduced gradient 

– sequential linear or quadratic programming (SLP/SQP) 

– augmented Lagrangian or exact penalty methods 

– interior point / barrier, filter methods 

x1 

f’(x1) 

root 

Forward difference 
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Variations on 

Derivative-Free Optimizers 

f(x(2)) 

reflect 

expand 

contract 

contract 

f(x1)) 

f(x(3)) worst 

Pattern Search methods search using a 

stencil, often that defines some basis, that 

is iteratively re-centered and resized. 

Nelder Mead searches using a 

simplex that is iteratively reflected 

through a centroid and resized. 
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Variations on  

Global Optimizers 

Multi-Start Local Optimization involves initiating a 

local optimization method at multiple points, with 

the goal of identifying multiple local minimizers 

from which the lowest can be chosen. 

Evolutionary/Genetic Algorithms 

evolve an initial random sample 

over generations, according a 

“fitness” function, until the 

minimum is found. 

Division of RECTangles (DiRECT) iteratively 

subdivides the search domain based on size 

and rank of each existing subdivision. 
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• What are some optimal design objectives that 

may be of interest? 

• What are some design constraints that may come 

into play? 

• What might you expect the results of optimizing a 

design to be? 

Example Problem: 

Cantilever Beam 
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• Create DAKOTA study to minimize area subject to constraints 
1.0 ≤ beam_width ≤ 4.0, 1.0 ≤ beam_thickness ≤ 4.0, 
stress ≤ 0, displacement ≤ 0 

• Use nominal (state variables): R=40000, E=2.9e7, X=500, Y=1000 

• Use CONMIN MFD method (could modify or borrow from template 

Optimization Local Constrained GradientBased) 

• Responses: 1 objective (area), 2 nonlinear inequality constraints 

• Try analytic vs. numerical gradients 

• Compare to Asynchronous Pattern Search, Coliny EA 

Example Problem: 

Cantilever Beam 
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Potential Solution: 

Cantilever Beam Optimization 

# extraexamples/cantilever_optimization.in 
# Perform deterministic optimization with uncertainties at nominal 
 
method 
  conmin_mfd 
 
variables 
  continuous_design = 2 
    upper_bounds 4.0  4.0 
    initial_point  2.5  2.5 
    lower_bounds 1.0  1.0 
    descriptors    'beam_width' 'beam_thickness' 
  # Fix at nominal 
  continuous_state = 4 
    initial_state 40000 2.9e7 500 1000 
    descriptors 'R' 'E' 'X' 'Y' 
 
interface 
  direct 
    analysis_driver = 'mod_cantilever' 
 
responses 
  num_objective_functions = 1 
  num_nonlinear_inequality_constraints = 2 
    descriptors = 'area' 'stress' 'displacement' 
  analytic_gradients 
  no_hessians 
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Results: 

Cantilever Beam Optimization 

DAKOTA Standard Output: 
 
<<<<< Function evaluation summary: 93 total (88 new, 5 duplicate) 
<<<<< Best parameters          = 
                      2.3518478279e+00 w 
                      3.3248865336e+00 t 
                      4.0000000000e+04 R 
                      2.9000000000e+07 E 
                      5.0000000000e+02 X 
                      1.0000000000e+03 Y 
<<<<< Best objective function  = 
                      7.8196271720e+00 
<<<<< Best constraint values   = 
                     -1.5245380116e-02 
                      9.9610350990e-04 
 
DAKOTA Tabular Output: 
 
%eval_id              w              t         obj_fn nln_ineq_con_1 nln_ineq_con_2  
       1              4              4             16     -0.6484375  -0.7326873741  
       2            3.8            3.8          14.44  -0.5899548039  -0.6718102213  
       3              3              3              9  -0.1666666667  -0.1551600958  
       4    2.840596397    2.840596397    8.068987889 -0.01835621192  0.05104499937  
       5    2.699999996    2.699999996    7.289999976   0.1431184327   0.2876694251  
………………………… 
     51    2.354544492    3.321059316    7.819581921 -0.01504188748 0.001014534674  
      52    2.355218658    3.320102512    7.819567383 -0.01499020104 0.001021619777  
      53    2.351847828    3.324886534    7.819627172 -0.01524538012 0.0009961035099  
      54     2.36533115    3.305750446    7.819194503  -0.0141758241 0.001246825701  
      55    2.363645734    3.308142458    7.819276808 -0.01431664619 0.001193803584  
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Brief Group Discussion: 

Cantilever Problem and Solution 

5-10 min discussion 

• Are the results what you expected?  Why or why 

not? 

• What do you see as the limitations of the method 

used? 

• What alternative methods might you try? 
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Optional Examples: Advanced 

Optimization Problems and Methods 

• Constrained 
– Exercise:  Minimize an objective given constraints 

• Multi-start local 
– Exercise:  Provide multiple starting points to a local optimizer 

to find multiple local minima 

• Global 
– Exercise:  Find the global extreme value 

• Multi-objective 
– Exercise:  Optimize across multiple competing objectives 

• Surrogate-based/multifidelity 
– Exercise:  Reduce the computational cost (i.e., number of 

function evaluations) of optimization 

• Hybrid 
– Exercise:  Use multiple optimization methods to solve a single 

problem 
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Quick Guide for  

Optimization Method Selection 
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Gradient-Based 

Local (Smooth 

Response) 

optpp_cg x 

dot_bfgs, dot_frcg, conmin_frcg x x 

npsol_sqp, nlpql_sqp, dot_mmfd, dot_slp, dot_sqp, 

conmin_mfd, optpp_newton, optpp_q_newton, 

optpp_fd_newton, weighted sums (multiobjective), 

pareto_set strategy (multiobjective) 

x x x 

Gradient-Based  

Global (Smooth 

Response) 

hybrid strategy, multi_start strategy 

x x x 

Derivative-Free 

Local 

(Nonsmooth 

Response) 

optpp_pds 
x x 

asynch_pattern_search, coliny_cobyla, 

coliny_pattern_search, coliny_solis_wets, 

surrogate_based_local 

x x x 

Derivative-Free 

Global 

(Nonsmooth 

Response) 

ncsu_direct 
x x 

coliny_direct, efficient_global, 

surrogate_based_global 
x x x 

coliny_ea, soga, moga (multiobjective) x x x x 

See Usage Guidelines in DAKOTA User’s Manual 
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Optimization References 

• J. Nocedal and S. J. Wright, “Numerical Optimization”, 

Second Edition, Springer Science and Business Media, 

LLC, New York, New York, 2006. 

 

• S. S. Rao, “Engineering Optimization: Theory and Practice”, 

Fourth Edition, John Wiley and Sons, Inc., Hoboken, New 

Jersey, 2009. 

 

• DAKOTA User’s Manual 

– Optimization Capabilities 

– Surrogate-Based Minimization 

– Advanced Strategies 

– Advanced Model Recursions: Optimization Under Uncertainty 

• DAKOTA Reference Manual 
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Learning Goals Revisited: 

Did we meet them? 

• Define goals of optimization and problem 

components 

• Identify information needed by DAKOTA 

• Become familiar with basic solution approaches 

• Define optimization problems associated with 

your field 

• Formulate and set up an optimization problem 

associated with the cantilever beam example 

• Find and interpret optimization study results 

• Survey problem categories and considerations 

for method selection 

 


